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J. Phys. A: Math. Gen. 16 (1983) 4265-4268. Printed in Great Britain 

On the connection between the hydrogen atom and the 
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$ Department de Physique, Institut des Sciences Exactes, Universite d'Oran, Es-Senia, 
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Abstract. The connection between a three-dimensional non-relativistic hydrogen atom 
with positive energy and a four-dimensional isotropic harmonic oscillator with repulsive 
potential is established by applying Jordan-Schwinger boson calculus to the algebra of the 
Laplace-Runge-Lenz-Pauli vector. The spectrum generating group S 0 ( 4 , 2 )  both for the 
bound and free states of the three-dimensional hydrogen atom arises as a quotient of the 
group Sp(8, R)  associated to a four-dimensional isotropic harmonic oscillator with con- 
straint. 

1. Introduction 

The connection between the hydrogen atom and the harmonic oscillator traces back 
to the early days of quantum mechanics. A correspondence between these two basic 
quantification cases was known to Schrodinger (1940) and probably also to Schwinger 
(cf McIntosh 1959). More recently, the hydrogen-oscillator connection has been 
revived. A link between the hydrogen atom and the harmonic oscillator was established 
for the corresponding radial Schrodinger wave equations (Bergmann and Frishman 
1965). Furthermore, a connection between the R' hydrogen atom and an RJ isotropic 
harmonic oscillator with constraint, or equivalently a coupled pair of R2 isotropic 
harmonic oscillators, has been investigated more or less independently by various 
people in recent years. More specifically, such a connection has been worked out 
mainly in the case of the discrete spectrum ( E  < 0)  of the R' hydrogen atom and was 
set up by using the squared parabolic coordinates (Ravndal and Toyoda 1967) and by 
using implicitly (Ikeda and Miyachi 1970, Chen 1980, Iwai 1982) or explicitly (Boiteux 
1972, Barut et a1 1979) the so-called Kustaanheimo-Stiefel transformation, an R4+ R3 
surjection (corresponding to an S3 X R' + S 2  XR' Hopf fibration) initially introduced 
for the regularisation of the R3 Kepler problem (Kustaanheimo and Stiefel 1965). 
Further, the hydrogen-oscillator connection for the discrete spectrum ( E  < 0)  has been 
recently obtained from the Pauli SO(4) equations of the R3 hydrogen atom and the 
Jordan-Schwinger boson calculus (Kibler and NCgadi 1983). 
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2. A preliminary result 

We shall deal in this paper with the continuous spectrum ( E  > 0) of the R3 hydrogen 
atom, a problem that was briefly touched upon by Barut et a1 (1979). We first recall 
(cf Boiteux 1972) that the complete Schrodinger equation for an R3 hydrogen-like 
aton1 may be transformed via the Kustaanheimo-Stiefel transformation into 

accompanied by a constraint condition; in equation ( l ) ,  Ze denotes the nucleus charge 
and p the reduced mass of the hydrogen-like atom under consideration. Therefore, 
for E > 0, we may rewrite equation (1) as 

where w and 8 are defined by 

4 E  = +pu2, 4 z e 2  = 8. (3) 

Equation (2) is the Schrodinger equation for an R4 isotropic harmonic oscillator with 
a negative potential energy, the spectrum of which is clearly continuous. We thus 
obtain the result (see also Barut et a1 1979) that a correspondence exists between the 
scattering states ( E  > 0) of the R3 hydrogen atom and states of an R4 isotropic harmonic 
oscillator with a repulsive potential. The aim of this paper is to obtain and to make 
precise this result without making use of the Kustaanheimo-Stiefel transformation. 
The approach followed in this work is based on the Pauli SOO(3, 1) equations relative 
to the continuous spectrum of the R3 hydrogen atom and the Jordan-Schwinger boson 
calculus. The merit of our approach is twofold: it allows us easily to introduce the 
spectral group S 0 ( 4 , 2 )  of the R3 hydrogen atom (as seen below) and it seems to be 
(although not easily) extendable to higher-dimensional hydrogen atoms while such an 
extension is not possible through a Kustaanheimo-Stiefel-type transformation because 
of a famous result of Hurwitz (see Kustaanheimo and Stiefel 1965). 

3. The main results 

We start from the two equations (Pauli 1926) 

and 

M * -  :Ze2)2= ( 2 ~ / p ) ( ~ ' + h ' )  

relative to an R3 hydrogen-like atom. In equations (4) and ( 5 ) ,  M stands for the 
Laplace-Runge-Lenz-Pauli operator and L for the angular momentum operator. In 
the case of the free states ( E  > O), by taking 

B = ( p / 2 E ) ' " M  (6) 
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equations (4) and ( 5 )  specialise to 

L * B = B . L = O  

and 

L’- ~ ’ + f i ’ =  - ( p / 2 ~ ) ( z e ’ ) ’  

(7) 

In addition, it is well known that L( L , ,  L2, L3)  and B( B,,  B2, B,) span the Lie algebra 
of the Lorentz group S00(3,  l ) ,  i.e. 

[Lj, Lk I = ifi EjklLl, [Lj,  Bk] = ifiEjki4, [Bj ,  Bk] = -ifi&jklLl. (9) 

A decisive point of this work amounts to finding a boson realisation of the commutation 
relations (9). We shall take the following bilinear realisation 

j = 1,2,3, 
Lj=;(a+aju+b+ajb)fi  

B, =;( a’a,CJ+ - a’Cu,b)fi 

a = [ ; : ] ,  6 = [ ; ; ] ,  c=( l  0 -1 ,), 
where a, ( j  = 1 ,2 ,3 )  are the standard Pauli matrices and where a, and a,’ ( j = 1 ,2 ,3 ,4 )  
are annihilation and creation Bose operators. (In passing we note in view of preparing 
the result below concerning S0(4 ,2 )  that the 36 possible bilinear forms of a, and U: 

( j =  1,2 ,3 ,4)  span the Lie algebra of the symplectic group Sp(8,R).)  Then, we 
introduce equations (10) into (7 )  and (8). As a result, equation (7) yields 

( u : u , + u : u ~ - u ~ u ~ - u , ’ u , ) ( u : u , ’  + u ~ u ~ - u : u ~  - ~ 2 0 3 ) = 0  (11) 

and equation (8) leads to 

(u :a ,  + a ~ a , - a ~ a , - a ~ a , ) ’ - ( n ~ a , ’  + a l a 4 -  a i a f  -a2a3)’= -2p(ze’)’/(~h’).  
(12) 

(Equations (11) and (12), as well as related equations, are of course understood to 
be taken modulo their action on a given state vector $.) On account of the fact that 
the two factors in equation (1 1) commute, the bosonised expressions (1 1) and (12) 
can be combined to give the solution 

a:a1+a;a2-a;a3-u,’a4=0 (13) 
and 

(a:a,’ + ala4-a;af -a2a3) ’= 2 p ( ~ e ’ ) ~ / ( ~ f i ’ ) .  (14) 

We now show that equation (14) is amenable to a form that parallels that of equation 
(2). By transforming the a, and U: ( j  = 1,2 ,3 ,4)  defined on C4 into the Q, and P, 
( j  = 1 ,2 ,3 ,4 )  defined on R4 X R4 owing to 

Q, = f ( 2 f i / p w ) ” 2 ( a , + a ~ ) ,  P, = $(2fipw)’”( a, - U: ) / i ,  (15) 

(16) 

equation (14) reads 

(2pI - l  PI P4 - f p w 2 Q ,  Q4 - (2pI-l P2P3 + 4pw2Q2 Q3 = w ( p / 2  E )1’2Ze2. 

An evident canonical transformation {PI,  Q,: j =  1,2,3,4}+{P;, 0; : j =  1 ,2 ,3 ,4 )  
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allows us to obtain finally 
4 

( 1 7 )  
1 4  - P ’ : - $ p w 2  0;’ =w(2p /E)”’Ze2 ,  

2p ] = I  ] = I  

to be compared with equation ( 2 ) .  
We thus end up with the result that the continuum states of an R3 hydrogen atom 

are connected with continuum states of an R4 isotropic harmonic oscillator with negative 
potential energy (cf equation ( 1 7 ) )  accompanied by a constraint condition (cf equation 
( 1 3 ) ) .  It is to be mentioned that the approach developed above for the scattering 
states of the R3 hydrogen atom can be also applied to the more familiar case of the 
bound states (Kibler and NCgadi 1983). It is thus possible to obtain the known result 
that, in the case of the discrete spectrum, the R3 hydrogen atom problem is equivalent 
to the problem of an R4 isotropic harmonic oscillator with constraint and, even more 
precisely, to the problem of a coupled pair of R2 isotropic harmonic oscillators. We 
would like to mention the result that the constraint obtained in the discrete case (Kibler 
and NCgadi 1983) is identical to the one obtained here in the continuous case (cf 
equation ( 1 3 ) ) .  As a last result, we note that the introduction of the constraint given 
by equation ( 1 3 )  into the Lie algebra of the symplectic group Sp(8 ,R)  spanned by 
the set { a T a l ,  aTak, alak ; j and k = 1 , 2 , 3 , 4 }  gives rise to an under constraint Lie 
algebra that is indeed isomorphic to the Lie algebra of the pseudo-unitary group 
SU(2,2). The latter results are in agreement with the fact that the conformal group 
S 0 ( 4 , 2 ) ,  locally isomorphic to SU(2,2) ,  turns out to be the spectral (dynamical) group 
of the R3 hydrogen atom both for the bound and scattering states. 
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